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Equations describing the mean residence time (MRT) of drugs in the body are derived for drugs that
are administered by first- and zero-order rates into systems with Michaelis-Menten elimination. With
computer simulations, the validity of these equations, the differences between them, and the conven-
tional approach using the AUMC/AUC or the summation of mean times are demonstrated by exam-
ining calculations of the percentage of the administered dose eliminated at the MRT and AUMC/AUC.
The effects of the absorption rate on the AUC and on the approximate and true MRT values in a
nonlinear pharmacokinetic system are also illustrated with computer simulations. It was previously
found that the true MRT,, = V,, - AUC,,/dose for an iv bolus. The total MRT (sum of input and
disposition) of a drug after noninstantaneous administration was found to be a function of the MRT,,,
two values of AUC (iv and non-iv), and exactly how the drug is administered expressed as the mean
absorption time (MAT). In addition, a theoretical basis is proposed for calculation of the bioavailability
of drugs in both linear and nonlinear pharmacokinetic systems.
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INTRODUCTION

Application of moment theory to the evaluation of drug
absorption in linear pharmacokinetic systems has been ex-
plored (1-3). When drug absorption is a zero- or first-order
process, the total mean residence time for an oral dose of
drug (MRT,,) can be described by the following equation:

MRT,, = MRT;, + MAT Q)

where MRT;, is the mean residence time after intravenous
(iv) bolus administration and MAT is the mean absorption
time. The MAT can be described for zero- and first-order
absorption processes (1-3), as follows:

T

MAT, = > )

and
MAT,; = l 3
1= ka ( )

where 1 is the time over which the zero-order absorption
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takes place and k, is an apparent first-order absorption rate
constant.

The mean residence time (MRT), after any mode of ad-
ministration of drug into a linear disposition system, can also
be described by the following equation (4):

fo ” t- C(t)dt
MRT = —f77——
f C(t)dr

0

= AUMC/AUC (4a, b)

where C(¢) is the drug concentration at time ¢, AUC is the area
under the plasma concentration-time curve, and AUMC is
the area under the first moment curve. Recently, it has been
shown that the application of Eq. (4) in calculating the exact
MRT is limited to linear pharmacokinetic systems (5). For a
drug administered by any route into the body and eliminated
from the central compartment by either a linear or a single
Michaelis-Menten process, the MRT can be calculated ac-
cording to (5)

fo ’ t - CL(t) - C(t)d:
MRT =

fo “ CL(@) - Coyd ©)

where CL(¢) is the plasma clearance at time t. After an iv
dose, the specific MRT becomes
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MRT,, = V,, - AUC,,/D ()]

where V is the steady-state volume of distribution, AUC,,
is the AUC following intravenous bolus administration of a
drug, and D is the dose administered.

The purpose of this report is to derive the MRT,,, of a
drug which enters the body (central compartment) by an
apparent zero- or first-order absorption process, follows a
one- or two-compartment distribution system, and is elimi-
nated by a single, Michaelis—Menten process:

AUC,,

MRTp, = MRTjy - m
v

+ MAT @)
where F is the bioavailability and AUC,, is the area under
the oral plasma concentration-time curve. Computer simu-
lations are used to verify that the calculation of MRT,,, using
Eq. (7) is valid in both linear and nonlinear pharmacokinetic
systems. We also show that the apparent MRT,,, calculated
using Eq. (1) or (4) does not provide the true MRT,,, for
nonlinear systems. In addition, the effects of the absorption
rate on AUC_, and the approximation of MRT,,, values by
Eq. (1) and by AUMC,_/AUC,,, are demonstrated with com-
puter simulations.

THEORETICAL
One-Compartment Model

First-Order Absorption

For a drug which enters the body by an apparent first-
order absorption process and follows a one-compartment
model having only Michaelis~Menten elimination (Fig. 1),
the rate of change of drug concentration [C(¢)] with time (¢)
can be described by the following equation:

dc() = ~kat
i F-D-k, e

Vm - C(

K,+cp ©

where V is the apparent volume of distribution, V,, is the
theoretical maximum rate of the elimination process, and K,
is the Michaelis constant. For Michaelis—-Menten systems,
clearance as a time-dependent function (5) CL(¢) is given by
Eq. (9):

V

m
CL(») = X, + CO) 9
Substituting Eq. (9) into Eq. (8) yields
D FD ka FD ko
Vin .Km Vin 1K Vin K

(a) (b) (c)

Fig. 1. The basic one-compartment models used for elaboration of
MRT relationships. (a) Intravenous bolus administration; (b) oral
administration with a first-order absorption process; (c) administra-
tion with a zero-order absorption or infusion process. Symbols are
defined in the text.

5
dac(e
. —# =F-D-ky-e " —CL@#-Ct) (10)
Rearranging terms yields
ac
CL(t)  CQ)=F D -ky-e &' -V Tt() (11)
Multiplying both sides of Eq. (11) by ¢ - dt yields
CL() ¢t - C)dt =F D -t ky e "dt
- V-t-dC@) 12)
It follows that
JcLw 1 cod= [ F-Dt kg e
0 0
a13)

—J:V-t-dC(t)

which, when solved using the method of integration by parts,
becomes

0 F .
[ cLw 1 c@a = v Auc, + — a9
0 a
Multiplying both sides of Eq. (11) by dt yields
CLO)-C)dt =F-D -k, - et — V-dC(t) (15
Integrating Eq. (15) from ¢ = 0 to « yields
[ cLoy - cwdr=F-D (16)
0

Substituting Eqs. (14) and (16) into Eq. (5) and denoting
MRT as MRT,, yields

V- AUC,,

MRTp = ————

+ 1/k, a7

For this one-compartment system, since V equals V., Eq.
(6) can be rearranged to

V/D = MRT;,/AUC;y, (18)

Substituting for V/D and 1/k, in Eq. (17) according to Egs.
(18) and (3) then gives Eq. (7). It can be noted in comparing
Egs. (6) and (17) that, as k, — o« and if F = 1, then as
expected, MRT,, = MRT;,.

Zero-Order Absorption

When the drug is absorbed by a zero-order process (Fig.
1), the rate of change of drug with time can be described by
the following equations:

. d_‘Ci‘Q =k, — KV,,,L__+ Cg(tt)) (when ¢t < or = 7)
(19)

and

dC() Ve CO)

Vo =T K v c0

(when t > 7) 20)
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where k, equals F - D/,
Substituting Eq. (9) into Eqs. (19) and (20) yields

. g—g? = ko — CL(Y) - C(t) (when t < or = 7)
(21
or
CL(t) - C(t) = ko — V - d—jf—ﬂ (when t < or = 7)
(22)
and
V. %Q = —CL() - C() (when t > 1) 23)
or
CL@®) - C() = —Lgtg@ (when t > 1) 24)

Muitiplying both sides of Eqs. (22) and (24) by ¢ - dt yields

CLG®) - t-C)dt =ky-t-dt — V-1t-dC@®

(whent <or = 1) 25)

and

CL(t) - t- C(t)dt = =V - t - dC(9) (when ¢ > 1)

(26)
It follows that

[ “CLG) -t CO)dr = | "CL() - ¢ - CQ)dr
0 0
+ f ) CL(®) - t - C(t)dt

= [ k-todt+ [ Vot-dom
0 T
(27a, b)
which, when solved using the method of integration by parts,
becomes

[ L@ 1 Cwdt = V- AUC, + ko - 722 (28)
0

Similarly, the following equation can be derived from Egs.
(22) and (24):

fo “CL(®) - Cddt = ko 1 =F-D (298, b

Substituting Eqs. (29) and (30) into Eq. (16) and denoting
MRT as MRT,, yields

V ° AUCpo +

.
MRTp, = —— 3 (30)

Substituting for V/D and 1/2 in Eq. (30) according to Eqgs.
(19) and (2) again yields Eq. (7).
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Two-Compartment Model

First-Order Absorption

For a drug that enters the central compartment by an
apparent first-order absorption process and follows a two-
compartment model having only Michaelis—Menten elimina-
tion from the central compartment (Fig. 2), the rates of de-
cline of the drug concentration in plasma [C(2)] and in tissue
[C+(#)] can be described by the following equations:

ac@) _ ket Vm " CO)
Ve~ “F D ke K, + CQ)
CL
~ CLp - C(t) + TD - Cyle) G1)
Vr dCT(t) _ CLp
R ar CLp - C(¢) R Cx(2) (32)

where V_ and V1 are the apparent volumes of distribution of
the central and tissue compartments, CL, is the distribution
clearance, and R is the tissue:plasma distribution ratio. Us-
ing the derivation technique shown previously (5) and above,
the following equation can be derived for this system:

Vs - AUC
MRTp, = —=——0° +

1
F-D ka ©@3)

In addition, Eq. (7) can also be derived from Eqgs. (3), (6),
and (33).

Zero-Order Absorption/Infusion

When the drug enters the central compartment by a
zero-order process (Fig. 2), the rate of change of drug con-
centrations in plasma and in tissue with time can be de-
scribed by the following equations:

CLp
D P E——
Vin s Km

(a)

(c)

Fig. 2. The basic two-compartment models used for elaboration of
MRT relationships. (a) Intravenous bolus administration; (b) oral
administration with a first-order absorption process; (¢) administra-
tion with a zero-order absorption or infusion process. Symbols are
defined in the text.
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dC(t) _ Vi - C(t)
Ve'Tar kK, v e S0 0
CLp
+ g " Cr)  (when:<or=1)
(34
dC(t)  Vu - C() ]
V. - Pl _K,,, O — CLp - C(r)
n % - Cr{ty  (when t> 1)
(35)
Vr dCr() CLlo
g Clp - C(t) — R Cr(9) 36)

For zero-order drug absorption, the following equation and
Eq. (7) can be shown to be valid:

Vis - AUCpo

T
MRTp = =7 5 37

For a one-compartment system, since V equals V, Eqgs. (16)
and (30) are identical to Egs. (33) and (37). Thus, when drug
is administered orally and exhibits nonlinear behavior, Egs.
(7, (33), and (37) are meaningful for both one- and two-
compartment Michaelis—Menten systems.

The following equations describe the mean residence
time of a drug after a constant-rate intravenous infusion
(MRT}p):

Vi AUCy =
MRT; =~ + 2 38)
MRT; = MRT,, - 209G, 1 (39)
it VAUG, 2

METHODS

Numerical integrations of the appropriate equations
[Egs. (8), (19), (20), (31), (32), and (34-36)] were performed
using the Runge-Kutta method (6) and an IBM XT micro-
computer system to obtain plasma concentration-time data
after oral administration of a hypothetical drug for the fol-
lowing models: (a) one-compartment Michaelis—-Menten sys-
tem (Fig. 1) and (b) two-compartment Michaelis—-Menten
system (Fig. 2). In the first case, simulations were performed
with V,, = 433.2 mg/da, K,, = 3.62 mg/liter, V = 57 liters,
D =1,600,and 1800 mg, F = 1,and k, = 16da~'ork, =
2000 mg/da. Similarly, in the two-compartment case, simu-
lations were carried out by using the following values: V, =
54.2 mg/hr, K, = 36.2 mg/liter, CLy, = 28.7 liters/hr, R = 1,
F =1, D = 50, 1000, and 30,000 mg, V. = 29.5 liters, V =
20.7 liters, and k, = 0.4 hr~! or k, = 100 mg/hr for D = 50
and 1000 mg as well as 1000 mg/hr for D = 30,000 mg. In
addition, simulated intravenous bolus data which were gen-
erated previously (5) using the above parameter values were
used for calculations. In the case of the two-compartment
system, apparent tissue concentrations of drug were also
generated to calculate the percentage of the dose eliminated
at MRT and AUMC/AUC [i.e., A.((MRT)% and A_(AUMC/
AUC)%]). Three doses were used in both the one- and two-
compartment cases to assure that pseudo-first-order, true

Michaelis-Menten, and initial pseudo-zero-order elimination
behavior would be observed in the limiting low-dose, mid-
dle, and limiting high-dose cases. The values of k, and £,
used in simulations also ensure that the absorption half-time
is less than or equal to MRT,,/S.

The values of AUC and AUMC were calculated by La-
grange cubic polynomial approximation (7) from the simu-
lated data. Values of MRT were calculated directly from
Egs. (1), (6), and (7). These values and A, (MRT)% and
A, (AUMC/AUC)% obtained from intravenous and oral ad-
ministration of drug for each model were compared.

To illustrate the effect of the absorption rate or absorp-
tion half-time of a drug on the AUC,,,, and the approxima-
tion of MRT,, values, additional simulations were per-
formed for the one-compartment Michaelis—-Menten system
with the zero-order absorption process. The k, was changed
from 200 to « mg/da, while the rest of the parameters were
kept constant at values mentioned above. The dose used in
these simulations was 600 mg. Values of AUC,,, MRT,,,
and AUMC,/AUC,, calculated for the various zero-order
absorption conditions were compared. In addition, the per-
centage deviation from the true MRT,,, values was also cal-
culated.

RESULTS

One-Compartment Model

The simulated concentration—time data shown in Fig. 3
were generated using Egs. (8), (19), and (20) as well as the
following equation for disposition of an iv bolus dose:

_v. dC(t)  Vm - CQ)
dt  Kn+ CO

(40)

where C() is the drug concentration at time ¢ after intrave-
nous bolus administration and the initial condition is C(0) =
D/V.

These data were used to calculate values of MRT,
AUMC/AUC, A.(MRT)%, and A.(AUMC/AUC)% for both
intravenous and oral administration as specified in Table I.
Except at the limiting low-dose case, values of MRT,,, cal-
culated using Eq. (1) versus AUMC,/AUC,, are different
from those calculated using Eq. (7). In addition, as doses
increase from 1 to 1800 mg, A.(MRT,;,)% decreases from
63.2 to 52.7%. The same is true for A, (MRT,,))% when
MRT,,, is calculated using Eq. (7). However, when MRT,, is
calculated using Eq. (1), the corresponding A, (MRT,_ )%
values decrease from 63.2 to 58.1 for the zero-order and 53.6
for the first-order absorption processes. In the same dose
range, AJ(AUMC_/AUC_ )% also decreases from the iv
value of 63.2 to 41.7 and 38.3% for these two absorption
processes.

Two-Compartment Model

Using the same procedures described above for the one-
compartment model, simulated data and an array of param-
eter values were obtained for a hypothetical drug obeying
the two-compartment model shown in Fig. 2. Equations (31),
(32), and (34)-(36) as well as the following equations for
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Fig. 3. Simulated concentration-time profiles for the corresponding
one-compartment models shown in Fig. 1 (a, b, c¢) using Egs. (8),
(19), (20), and (40) with D = 1, 600, and 1800 mg (curves in ascend-
ing order) and parameter values described in the text. For clarity,
the data for each dose are displaced by 1 day on the time axis from
the preceding data.

disposition of an iv bolus were used to gencrate the simu-
lated concentration—time profiles plotted in Fig. 4:

dcy  Vm- CQ) , Clp
Ve = " kovew - Oy €O+ R Gl
1)
Vr dCr(t CL
}I . ._;;‘Q = CLD . C(t) — —RB . CT(t) (42)

where the initial conditions are C(0) = D/V_and C(0) = 0.
Table II lists the values of MRT, AUMC/AUC, A.(MRT)%,
and A, (AUMC/AUC)% for intravenous and oral adminis-
tration along with specification of the calculation methods.
As shown in Table II, again, except at the limiting low-dose
case, the methods of calculating the MRT,,,, [Egs. (1) and (7)]
and the approach using the AUMC, /AUC,, [Eq. (4)] yield
different values for the oral drug. Also, for the dose range
studied and regardless of the kinetic order of the absorption
processes, Eq. (7) yields MRT,, values for which calculated
values of A, (MRT,,)% equal those of A, (MRT,,)%. How-
ever, the same is not true at the apparent MRT,,, calculated
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using Eq. (1) and at AUMC,/AUC,; at these times,
A MRT,,)% ranges from 53.4 and 52.0 to 63.1%, while
A (AUMC/AUC)% lies in the range of 35.7-63.1 and 35.9-
63.0% for the zero- and first-order absorption processes.

Effects of Absorption Rate on AUC,,, and Approximation
of MRT,,,

Simulations were performed to demonstrate the effects
of the absorption rate or the absorption half-time (time at
which 50% absorption occurs) on the AUC,, and the ap-
proximation of MRT,, by Eq. (1) and AUMC,/AUC,,,. Fig-
ure 5 presents plots of the concentration-time profiles gen-
erated for the one-compartment model. Values of the param-
eters obtained from these data for various k, are listed in
Table III. As k, increases from 200 mg/da to infinity or the
absorption half-time decreases from 1.5 to 0 day, values of
AUC,, increase from 7.77 to 12.3 mg - da/liter, while values
of MRT,, calculated using Eq. (7) decrease from 2.24 to 1.17
days. In addition, as the absorption half-time decreases, the
calculation error of MRT,,, by using Eq. (1) decreases from
19.2 to 0%, while the error related to using AUMC,,/JAUC,,
increases from 0.9 to 23.9%.

DISCUSSION

In linear pharmacokinetic systems, MRT;, is constant
and independent of dose, as it relates only to two constant
parameters, V,, and CL. Similarly, according to Eq. (1),
MRT,, in these systems is also dose independent. In con-
trast, as reported previously (5), in nonlinear pharmacoki-
netic systems, MRT,, increases with dose. The newly de-
rived Egs. (33) and (37) indicate that MRT, is also dose
dependent in these systems. According to the more general
Eq. (7), MRT,, is a function of AUC,, and F - AUC;,. When
equal doses are given intravenously and orally, in middle-
and high-dose cases, AUC_, is smaller than F - AUC,,, as
the time-average clearance (5) for intravenous administra-
tion (CL,,) is smaller than that after oral administration
(CL,,). Thus, values of MRT, for nonlinear systems esti-
mated using Eq. (7) are expected to be smaller than those
obtained from Eq. (1), which pertains to linear elimination.
However, in limiting low-dose cases, Eq. (7) degenerates to
Eq. (1) as AUC,,, approaches F - AUC;,. For middle- and
high-dose situations, Eq. (1) overestimates the MRT,,, (Ta-
bles I and II).

The common approach for calculating MRT,, using
AUMC,/AUC,, is similarly valid only in limiting low-dose
cases. For middle- and high-dose situations, this method un-
derestimates MRT,,,. If one uses Eq. (1) to calculate the
MRT,, for a drug eliminated nonlinearly from the body, un-
der the simulation conditions, the calculation error will range
from negligible (0%) at low doses to small (1-5%) at middle
and high doses. In contrast, the corresponding error caused
by using AUMC,_ /AUC,, [Eq. (4)] will range from negligible
(0%) to moderate (31.0%). Thus, Eq. (1) gives a better ap-
proximation of MRT,,, values than does AUMC,,/AUC,,,.
However, it also necessitates more experimental data after
both iv and oral doses.

As pointed out by Riegelman and Collier (2), in a linear
pharmacokinetic system, if the absorption half-time is less
than or equal to MRT,,/5, values of A, (MRT,,)% are exper-
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Table I. Comparison of Residence Time Values Obtained from Different Modes of Drug Administration for a
One-Compartment Michaelis-Menten System

Dose Dosing MRT MRT AUMC/AUC A, (MRT) A, (MRT) A, (AUMC/AUC)
(mg) mode (da)* (day” (da) (%) (%) (%)
1 iv 0.48 — 0.48 63.2 — 63.2
po: k, 0.48 0.48 0.48 63.2 63.2 63.2
po: k, 0.54 0.54 0.54 63.2 63.2 63.2
600 iv 1.17 — 0.89 56.2 — 523
po: k, 1.26 1.32 1.02 56.2 58.6 45.1
po: k, 1.20 1.23 0.94 56.2 57.3 45.1
1800 iv 2.55 — 1.80 52.7 — 37.9
po: k, 2.72 3.00 2.16 527 58.1 41.7
po: k, 2.57 2.61 1.84 52.7 53.6 38.3

4 Calculated using Eq. (6) (iv) and Eq. (7) (po).
® Calculated using Eq. (1).

¢ Obtained using MRT as described in footnote a; calculated as {1 — [V - C(t)/D]} X 100% at t = MRT.
4 Obtained using MRT as described in b; calculated as {1 — [V - C(t)/D)} x 100% at t = MRT.
¢ Calculated as {1 — [V - C(t)/D]} x 100% at t = AUMC/AUC.

imentally indistinguishable from A.(MRT,,)%, which equals
63.2%. This implies that in those cases where the rate-
limiting step is elimination instead of absorption,
AMRT,,)% equals A.(MRT;,)%. This concept can be ex-
tended to nonlinear pharmacokinetic systems, which allows
us to verify Eq. (7) by computer simulations. Indeed, using
Eq. (7) to calculate MRT,,,, we have shown that A (MRT)%
values for drugs exhibiting one- and two-compartment
Michaelis—Menten characteristics are independent of the
mode of drug administration (Tables I and II). Thus, MRT,,,
defined by Eq. (7) is meaningful in both linear and nonlinear
systems.

Since our initial simulations were performed under the
condition that the absorption half-time is less than or equal
to MRT,,/5, the validity of the observation that Eq. (1) gives
a better approximation of MRT,, values than AUMC,_,/
AUC,,, when absorption was slower was uncertain. Thus,
the effects of varying the absorption half-time relative to
MRT,,/5 on the calculation of MRT,,, values by using Eq. (1)
or AUMC, /AUC,,, were examined. As shown in Table III,
when the absorption half-time is less than or close to MRT,,/
5, Eq. (1) performs better than AUMC,,/AUC,, to approx-
imate the true MRT,, values. However, when the absorp-
tion half-time is larger than MRT,/5, the converse holds.
Thus, in nonlinear pharmacokinetic systems, the accuracy of
the conventional methods using Eq. (1) or AUMC,/AUC,,
to approximate the MRT,, values depends not only on the
severity of the nonlinear condition but also on the relative
absorption rate.

In these simulations, we also examined the effect of the
absorption rate of a drug on the AUC,, in a nonlinear sys-
tem. As indicated in Table III, the slower the absorption
rate, the smaller the AUC,,. This is consistent with obser-
vations by Wagner ef al. (8).

Although the equations derived and simulations per-
formed in this work have been based only on one- and two-
compartment Michaelis-Menten elimination, they are also
valid (by extrapolation) for multiple-compartment distribu-
tion systems. According to Egs. (7) and (39), in nonlinear
systems, the MRT of a drug after noninstantaneous admin-
istration is a function of the MRT,,, two AUC values (iv and

Concentrotion (mg/L)
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Fig. 4. Simulated concentration-time profiles for the corresponding
two-compartment models shown in Fig. 2 (a, b, ¢) using Eqgs. (31),
(32), (34)(36), (41), and (42) with D = 50, 1000, and 30000 mg
(curves in ascending order) and parameter values described in the
text. For clarity, the data for each dose are displaced by 100 hr on
the time axis from the preceding data.
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Table II. Comparison of Residence Time Values Obtained from Different Modes of Drug Administration for a
Two-Compartment Michaelis-Menten System

Dose Dosing MRT MRT AUMC/AUC A, (MRT) A, (MRT) A, (AUMC/AUQ)
(mg) mode (hr)* (hr)® (hr) (%) (%) (%)
50 iv 34.0 — 33.9 63.1 — 63.0
po: k, 342 34.2 34.2 63.1 63.1 63.1
po: k, 36.5 36.5 36.0 63.1 63.1 63.0
1,000 iv 42.8 — 38.5 60.9 — 56.7
po: k, 47.1 47.8 43.4 60.9 61.6 57.3
po: k, 44.7 45.1 40.8 60.9 61.4 57.0
30,000 iv 310.0 — 214.0 51.6 — 36.0
po: k, 313.6 325.0 223.9 51.6 534 35.7
po: k, 310.4 312.5 214.2 51.6 52.0 35.9

4 Calculated using Eq. (6) (iv) and Eq. (7) (po).
& Calculated by using Eq. (1).

¢ Obtained using MRT as described in footnote a; calculated as {l — [V - C(t) + V- Cp(t)V/D} X 100% at t =

MRT.

< Obtained using MRT as described in footnote b; calculated as {1 — [V, - C(¥) + Vg - Cp(O))/D} x 100% at ¢

MRT.

¢ Calculated as {1 — [V, - C(t) + V- C(0)]/D} x 100% at t = AUMC/AUC.

non-iv), and exactly how the drug is administered. Since the
process of intravenous infusion can be treated as a special
case of zero-order absorption process, the simulations per-
formed in this report for the latter are also meaningful for the
former.

Bioavailability Considerations

The classical method for estimating bioavailability is
based on the following equation for F (3):

oo D AUC,, @)

Dy, - AUCyy
However, this method assumes linearity in drug elimination
and hence is not applicable to estimate F in Eq. (7). Martis
and Levy (9) have shown that F calculated by using Eq. (43)
for a drug which actually exhibits nonlinear elimination ki-

Concentration (mg/L)

10F

Time (days)
Fig. 5. Simulated concentration-time profiles for the one-
compartment model shown in Fig. 1c using Eqs. (19), (20), and (40)
with D = 600 mg and parameter values described in the text. (——)
ky = 200; (——) k, = 600; (~ - -) k, = 2000; (=) k, = o mg/da.

netics could involve large errors. They proposed the follow-
ing equation as the basis for calculating F of drugs which are
orally administered and show simultaneous first- order and
Michaelis—-Menten elimination kinetics in a one-compart-
ment system:

F=(m)- [ fo ) (dAe/dt)dt]pO/[ fo C- (dC/dt)dt]iv
@4)

assuming that equal doses are given intravenously and
orally.

Irrespective of the linearity of a pharmacokinetic sys-
tem, the bioavailability of drugs after oral administration can
be described by the following (see Appendix):

Dy - [J;) (dAe/dt)dt]po D;, - f CL,o(1) - Cpolt)dt
0
F = =

Dy, - [ fo (dAJdndt |,

Dpo . J: CLiW(®) - Ci(dt
(45a, b)

Since the calculation of F using Eq. (45) is based only on the
assumption that elimination of drug occurs from the central
compartment, this relationship is applicable for single- and
multiple-compartment systems as well as for linear and non-
linear systems. In linear systems, plasma clearance is con-
stant, which results in Eq. (45b) degenerating to Eq. (43).
Otherwise Eq. (43) does not follow from Eq. (45b) and is no
longer meaningful for the calculation of F. Assuming that D,
= D, Eq. (44) evolves from Eq. (45). Thus, Eq. (44) is not
limited to one-compartment Michaelis~Menten systems. The
utility of Eq. (44) to calculate F for drugs showing one-
compartment Michaelis-Menten kinetics has been illustrated
by computer simulations (9). It has also been applied to the
determination of phenytoin bioavailability (10). Similarly,
Eq. (44) or (45) can be used to determine F in Eq. (7) or F of
drugs eliminated nonlinearly from a multiple-compartment
body model. It should be noted, however, that this method
requires estimates of V, and X,, from intravenous doses
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Table III. Effects of Absorption Rate or Absorption Half-Time on AUC,, and the Calculation of
Residence Time Values

Absorption
k, half-time MRT,./5 AUC,, MRT,, MRTro AUMC,,/AUC,,
(mg/da) (da) (da) (mg - da/liters) (da)? (da)® (da)

200 1.5 0.23 7.77 2.24 2.67 2.22
(19.2)¢ 0.9)
600 0.5 0.23 10.37 1.48 1.67 1.33
(12.8) (10.1)
2000 0.15 0.23 11.66 1.26 1.32 1.02
4.8) (19.0)
— 0 0.23 12.30 1.17 1.17 0.89
) (23.9)

¢ Calculated using Eq. (7).
& Calculated using Eq. (1).

¢ Number in parentheses is the percentage deviation (abs. value) from the true MRT,,, values.
4 Values of parameters generated for an intravenous bolus were used.

plasma data, which in practice, may not be necessarily easy
or accurate.

Recently, Cutler proposed a broader definition of MRT
based on cumulative amounts of drug eliminated that applies
to both linear and nonlinear systems (11). He also pointed
out that the additive properties of moment theory described
in Eq. (1) applied only to linear pharmacokinetic systems. In
this report we have shown that the similar but more complex
additive properties described in Eq. (7) apply to linear and
nonlinear pharmacokinetic systems. We have also demon-
strated that, in a nonlinear system, absorption rate has a
pronounced effect on AUC,,, and alters the accuracy of us-
ing either Eq. (1) or AUMC,, /AUC,, to approximate MRT,,,
values. In addition, this report provides a more general
method for calculation of the bioavailability of a drug exhib-
iting either linear or nonlinear behavior.

APPENDIX

Derivation of the Bioavailability Equation 45

The bioavailability (F) of the drug can be defined as

_ [Ab]p()/ D po

F =
[Ap)iv/Diy

(AD)

where [A;],, and [A,];, are the total amounts of drug in the
body after oral and iv routes.
Since
A = D - A() (A2)

where A, (#) and A.(¢) are the amounts of drug in the body
and eliminated at time ¢. It follows that
dA(D/dt = —dA(t)/dt (A3)

By definition

dA.()/dt = CL(») - C(® (Ad)
Combining Eqs. (A3) and (A4) yields

dA (D/dt = —dA_(D/dt = —CL(t) - C(H) (ASa, b)
Multiplying both sides of Eq. (A5) by dt and integrating the
results from time 0 to o« yields

| tdasteydeidr = - [ [dadeydiar
0 0

= - fo B CL() - C(5)dr

(A6a, b)
Now
[4) = | " [das(iyariar (A7)
Combining Eqs. (A6) and (A7) yields
[A] = fo " [dAw(t)dildt
- fo * [dA(oydldt
- - fo “CL(#) - C)dt  (A8a, b, )

Substituting Eq. (A8) into Eq. (Al) for both oral and iv
routes yields Eq. (45).
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